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ABSTRACT

Functional units provide the backbone of any spatial accelerator
by providing the computing resources. The desire for having rich
and expensive functional units is in tension with producing a regu-
lar and energy-efficient computing fabric. This paper explores the
design trade-off between complex, universal functional units and
simpler, limited functional units.

We show that a modest amount of specialization reduces the
area-delay-energy product of an optimized architecture to 0.86x a
baseline architecture. Furthermore, we provide a design guideline
that allows an architect to customize the contents of the comput-
ing fabric just by examining the profile of benchmarks within the
application domains.

Categories and Subject Descriptors

B.2.1 [Arithmetic and Logic Structures]: Design Styles; C.1.1
[Processor Architectures]: Single Data Stream Architectures

General Terms

Design, Performance

Keywords

CGRA, energy-efficiency, functional units, architecture

1. INTRODUCTION

Functional units are the core of compute-intensive spatial ac-
celerators. They perform the computation of interest with support
from local storage and communication structures. Ideally, the func-
tional units will provide rich functionality, supporting operations
ranging from simple addition, to fused multiply-adds, to advanced
transcendental functions and domain specific operations like add-
compare-select. However, the total opportunity cost to support the
more complex operations is a function of the cost of the hardware,
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the rate of occurrence of the operation in the application domain,
and the inefficiency of emulating the operation with simpler opera-
tors. Examples of operations that are typically emulated in spatial
accelerators are division and trigonometric functions, which can be
solved using table-lookup based algorithms [1] and the CORDIC
algorithm [2].

One reason to avoid having direct hardware support for complex
operations in a tiled architecture like a Coarse-Grained Reconfig-
urable Array (CGRA) is that the expensive hardware will typically
need to be replicated in some or all of the architecture’s tiles. Tiled
architecture are designed such that their tiles are either homogenous
or heterogenous. Homogenous architectures are simpler to design
but heterogeneous architectures can be more efficient. Generally,
CGRAs try to support a rich set of operations with the smallest
possible set of hardware devices.

2. BACKGROUND

This work builds upon the Mosaic research infrastructure and
optimized architectures that were designed in [3] and [4]. Further-
more, this work uses the same suite of benchmarks and 65nm pro-
cess for the architecture’s physical models as [4].

2.1 Architecture

The Mosaic CGRA architectures are a class of statically sched-
uled coarse-grained reconfigurable arrays. They are designed to
exploit loop-level parallelism in an application’s computationally-
intensive inner loops (i.e. kernels) in an energy-efficient manner.
The architectures are dynamically reconfigured, so that they time-
multiplex their functional units and interconnect on a cycle-by-
cycle basis. Like many CGRAs ([5], [6], [7]), the Mosaic architec-
ture fits in the design space between FPGAs and VLIW processors,
with similarities to a word-wide FPGA and a 2-D VLIW.

The Mosaic CGRA architecture (shown in [4]) is a cluster-based
architecture that is arranged as a 2-D grid. To minimize the design
complexity, the clusters are homogenous in the set of functional
units that are supported. All of the clusters have four 32-bit pro-
cessing elements. The 32-bit datapath in each cluster also has two
large rotating register files for long-term storage, two distributed
registers, one or two data memories, and connections to the grid in-
terconnect. The 32-bit data path is complemented by a 1-bit control
path that handles predicate generation and evaluation.

2.2 Related Work

Few other research efforts have evaluated the energy advantages
and tradeoffs of architectural features in CGRAs. By and large



32-bit Logic Arithmetic Ops. Arith. & Logical 1-bit Logic
Benchmark Category | & Comparison | Simple | Complex | Select Shifts & Comparison
FIR Complex 0.7 0.7 47.1 47.1 0.7 3.7
FIR (Banked) Complex 3.6 232 429 24.1 0.9 5.4
Convolution Select 34 1.1 27.8 63.4 0.6 3.7
Dense matrix multiply Select 5.5 0.9 14.6 61.2 14.6 32
Motion Estimation Simple 40.9 18.5 7.2 18.1 39 11.5
Smith-Waterman Simple 39.8 21.0 0.2 36.8 0.0 22
K-Means Clustering Simple 345 25.3 0.0 335 0.0 6.8
CORDIC Simple 15.0 26.4 0.0 39.3 7.1 12.1
PET Event Detection Simple 33.8 8.9 2.9 46.6 5.8 2.0
Matched filter Balanced 9.5 7.1 214 222 25.4 14.3
Average 24.4 13.1 11.0 41.0 5.0 5.5

Table 1: Frequency of dynamic operations, reported as percentage, in the benchmark suite.

these efforts have focused on ad-hoc system analysis that examine
multiple architecture features simultaneously. Kim et al. [8] looked
at the tradeoffs for what they call primitive versus critical functional
unit resources in a MorphoSys-style CGRA. Their study found that
pipelining and sharing multipliers with other processing elements
substantially reduced the area and delay of the architecture. These
results align well with the results presented here, although our re-
sults started out with a pipelined multiplier and were conducted on
a much larger scale. Wilton et al. [9] explore the connectivity re-
quirements for point-to-point interconnects in an ADRES architec-
ture with a heterogenous mix of functional units, when optimizing
for area and performance. Others such as [10] were smaller evalu-
ations that confirmed benefits from state of the art design practices,
such as clustering multiple functional units together.

3. EVALUATING OPERATOR FREQUENCY

This experiment uses the benchmark suite as detailed in [3] and
[4]. Table 1 shows the breakdown of operations within the bench-
mark suite, as well as an average frequency for each class of oper-
ation. Note that simple arithmetic operations are addition, subtrac-
tion, and negation, while multiplication and fused multiply-add or
multiply-subtract operations are complex operations. Table 1 also
shows how applications can be broadly categorized by the domi-
nant type of operations. Note that complex arithmetic was given
special priority with a threshold of only 40%, due to its relative im-
portance in the application domain and complexity of the hardware.

e Balanced - relatively even mix of all operation types

e Simple-dominant - > 60% operations are simple arithmetic
or logic / comparison operations

e Complex-dominant - > 40% operations are complex arith-
metic

e Select-dominant - > 60% operations are select operations

The profile of the benchmark applications shows two key things:
select operations are extremely common, while complex multiply
or multiply-add operations rarely exceed 25% (and never 50%) of
operations in the suite. Select operations provide dynamic data
steering within the statically scheduled CGRA, typically staging
data for subsequent computation. This makes it attractive to co-
locate select hardware with other functional units, such as the ALU.

4. DESIGNING THE FUNCTIONAL UNITS

Tiled spatial accelerators typically eschew embedding the more
complex and esoteric functional units, in favor of a simpler repeated
tile, focusing on a range that spans simple adders to fused multiply-
add units. In this experiment we explore the following primitive

and compound functional units for the word-wide datapath. Note
that the single-bit datapath uses a 3-input lookup table for its func-
tional units.

ALU - arithmetic and logic unit, with support for select
Shifter - logarithmic funnel shifter

MADD - 2-cycle fused multiply-add

S-ALU - compound unit with shifter, ALU, and select
Universal - compound unit with MADD, shifter, ALU, and
select

4.1 Compound functional units

The S-ALU and universal compound functional units combine
multiple primitive functional units into a single logical group. It is
notable that while a compound functional unit could support mul-
tiple concurrent operations internally, it lacks the input and output
ports necessary to supply and produce multiple sets of operands
and results. Sharing the input and output ports mitigates the need
to increase the size of the cluster’s crossbar as more functionality
is added to each functional unit. The cost for adding a port to the
crossbar is approximately the same as the hardware for an ALU. In
addition to the cost of adding a port to the crossbar, each input and
output of the functional unit requires some peripheral hardware in
the processing element (PE) to stage operands and results.

By treating compound FUs as one logical device, the placement
tool will only map a single operation onto the functional unit per
cycle. This ensures that an architecture maintains the same num-
ber of concurrent operations per cluster when mixing primitive and
compound functional units. Two other advantages of maintaining
the same number of concurrent operations per cluster are 1) the ex-
ternal support resources in the cluster do not have to be scaled as
capabilities are added to each functional unit, and 2) it is easier to
test and make comparisons between two architectural variants.

4.2 Comparison of Functional Units

To evaluate the tradeoff between flexibility and overhead for the
functional units we examine several of their characteristics. The
area and energy metrics for the each type of processing element
(i.e functional unit plus word-wide peripheral logic) and their as-
sociated crossbar 1/O ports are presented in Table 2. Note that the
configuration energy includes both the static and dynamic energy
of the configuration SRAM and associated logic, since the dynamic
energy consumed per clock cycle can be precomputed. The periph-
eral resources include the local register files, input retiming regis-
ters, and multiplexers.

One advantage of using compound functional units instead of a
larger number of primitive functional units is that it minimizes the



Static | Config. | Datapath
Processing Element | Area | Energy | Energy | Ports (I/0)
ALU 17754 12.2 519.2 2/1
Shifter 17703 12.3 519.2 2/1
MADD 30754 16.0 631.4 3/1
S-ALU 19177 12.4 531.7 2/1
Universal 38357 19.5 814.4 4/1

Table 2: Characteristics for each type of processing elements
(functional unit plus peripheral logic) and crossbar I/O ports.
Area is reported in wm?. Static and configuration energy was
computed for a clock period of 1.93ns and are reported for

fJ/cycle.

number of output ports and peripheral resources required. Since
the functional units consume more values than they produce, there
are fewer inputs to the crossbar than outputs from it, and thus the
crossbar is not square. Therefore, the cost to add an output port to
the functional unit (or attaching another device to the crossbar) is
significantly more expensive than adding an input port, primarily
due to the high number of capacitive loads within the crossbar.

S. EXPERIMENTS

To explore the impact of specializing the functional units in a
cluster we test several clusters built with different functional units.
The baseline architecture has four universal functional units per
cluster and the optimized storage design from [4], with a private
rotating register file in each functional unit and one cluster-wide
large rotating register file. Each test in this experiment replaced
some of those four functional units with a more specialized device.
Two design considerations that were followed during this experi-
ment were 1) each cluster could perform all supported operations,
and 2) the number of concurrent operations per cluster remained
constant.

To specialize the functional units we looked at the frequency of
operations in the benchmark suite. The first optimization is to re-
duce the total number of multipliers within the architecture because
they are the most expensive units, require the most input ports,
and multiplication and MADD operations only make up ~11% of
the dynamic operation mix. As the number of multipliers is re-
duced, architectures will have a small number of either Universal
FUs or MADDs, and the remaining functional units will be either
be S-ALUs or ALUs, which are abbreviated as U, M, S, and A, re-
spectively. The set of permutations that we explored in this paper
are designated as architectures: A - 4U, B - 3Ux1S, D 2Ux2S, E -
2Ux1Sx1A, F - 2Ux2A, G - 1Ux3S, and K - 1Mx3S.

To test the impact of specializing the functional units, each ap-
plication in the benchmark suite was mapped to each architectural
variant multiple times with different random placement seeds. The
target architecture for each application was sized so that the ap-
plication’s critical resource consumed approximately 80% of the
architecture’s resources. We used 12 placement seeds per appli-
cation, although FIR and convolution were tested with 20 seeds
because they showed a higher variability in quality of placement.
After simulating each application to architecture mapping, the area-
delay-energy (ADE) product for each tests was calculated and used
to select the random seed that produced the best ADE results.

6. RESULTS

Specialization of the functional units involves three key princi-
ples: 1) stripping away expensive and underutilized resources, 2)
avoiding overly specialized hardware, and 3) creating functional

units with rich functionality when the extra logic is inexpensive
(i.e. maximizing the utility of fixed resources). The effects of each
of these principles is explored in the following three sections as the
architecture moves from a general to a specialized fabric design.
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Figure 1: Average area-delay-energy product for architectures
that are specialized with a mix of universal, S-ALU, and MADD
FUs functional units.

6.1 Paring down underutilized resources

Figure 1 shows the area-delay-energy product, averaged across
all benchmarks, for several architecture designs. The delay met-
ric is the execution time averaged across all applications, and the
total energy reported includes dynamic, static, configuration, and
clock energy. This section focuses on the first four columns, which
shows the trends as the MADD units are removed from individual
functional units in architectures A, B, D, and G. Specializing the
functional units by removing superfluous MADD devices reduces
the area-delay-energy product by as much as 0.86x the area-delay-
energy of the baseline architecture. The best specialized design, D,
has 2 Universal FUs and 2 S-ALU FUs, versus a baseline with 4
Universal FUs.

As the designs go from having 2 to 1 Universal FU per cluster in
architectures D and G, the number of clusters required goes up by
6.5%, which gives architecture D its performance advantage. This
happens because, as we reduce the number of MADD devices, the
complex-dominant (45.0% multiplication) and select-dominant
(21.2% multiplication) applications become resource-starved, and
require more clusters to have enough multipliers.

6.2 Avoiding excessive specialization

Given the benefits of paring down underutilized resources, it may
seem obvious to replace at least one universal functional unit with
a dedicated MADD FU, as tested by architecture K. Not only is
the MADD functional unit smaller than the Universal FU, it also
requires one less crossbar port. It turns out that architecture K
is overly specialized with the MADD FU and performs worse, in
terms of overall area-delay-energy product and total energy con-
sumed, than all other specialized architectures, and only marginally
better than the general design with four Universal FUs as shown in
Figure 1. While architecture K required 7% more clusters than G,
the 11% increase in energy is partly due to G being able to co-locate
instructions on a single functional unit better than K. This allows
sequences of operations to stay in the same processing element in-
stead of having to traverse the cluster’s crossbar.

6.3 Exploiting fixed resource costs

The third design principle we mentioned earlier is to make func-
tional units as rich as possible when the additional functionality is
cheap. Since shift operations are relatively rare in our benchmarks,
it might make sense to reduce some or all of the S-ALUs to pure
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Figure 2: Average area-delay-energy product for architectures
with 2 universal FUs and a mix of S-ALU and ALU functional
units, with architecture A as reference.

ALUs. However, when we look at Table 2, we see that the shifter
is relatively cheap, and that an ALU is only 0.93x smaller than a
S-ALU when the peripheral logic and crossbar connections are also
factored in.

Figure 2 compares architectures with 2 Universal FUs, and a mix
of S-ALUs and ALUs. As can be seen, the differences between the
architectures D, E, and F are small, though as we convert from S-
ALUs to ALUs we slightly decrease the area, and slightly increase
the power and delay. Therefore, it makes sense to use the S-ALU
to maximize the utility of both the peripheral logic and crossbar
ports. The other advantage of building richer functional units is
an increased opportunity for spatial locality when executing a se-
quence of operations that requires a diverse set of operators.

7. PREDICTING THE MIX OF FUNCTIONAL

UNITS

It is valuable to be able to predict a good functional unit mix for
different application domains by examining the characteristics of
benchmarks in that application domain, instead of using extensive
testing. We present a set of guidelines that combines the three prin-
ciples for specializing the functional units (Section 6), and other
constraints discussed in Section 4. Aside from their applicability to
the Mosaic CGRA, these guideline can be applied to other CGRAs
and tile-based spatial accelerators.

1. Every tile must support all operations.

2. Remove expensive and underutilized hardware: strip away
MADD devices where possible.

3. Avoid over specialization, which can lead to under-utilization
and poor spatial locality due to a lack of co-location.

4. Make FUs support rich functionality when it is inexpensive
to do so: avoid standalone ALUs since a S-ALU is only
marginally more expensive and can make better use of pe-
ripheral logic and crossbar resources.

5. Provide functional diversity within a tile to allow colloca-
tion and simultaneous execution of operations on expensive
resources.

Validating the effectiveness of these guidelines is beyond the
scope of this paper, but a preliminary evaluation is shown for the
simple-dominant application category presented in Table 1. For
the simple-dominant applications, our guidelines predict that G is
the right architecture, because there is a much smaller percent-
age of complex operations, only 2.1% on average and a peak of
7.2%. Experimental results (omitted here due to space restrictions)
showed that the predicted architecture G was within 2% of the best
architecture, which took advantage of the fact that the number of

shift operations is significantly smaller (only 3.4%) than for the
balanced-dominant and select-dominant categories, and thus had
fewer shifters.

8. CONCLUSIONS

Specializing the functional units within a CGRAs tile can im-
prove the architecture’s area-delay-energy product by 0.86 x just by
paring down infrequently used hardware devices. Specifically, mul-
tiply and multiply-add operations are expensive and do not dom-
inate all applications within the benchmark suite, thus requiring
only one to two out of the four functional units to support them.
While shift operations are also infrequent, they are relatively in-
expensive to implement. More importantly, they do not require
additional ports from the crossbar beyond what is required for an
ALU. Therefore, they can be added for minimal cost and improve
the opportunities for spatial locality; increased spatial locality re-
duces crossbar activity and increases the utility of each input port to
the functional unit and the peripheral logic that supports the func-
tional unit. Furthermore, maintaining a couple universal functional
units within each cluster, rather than a set of FU types without func-
tional overlap, provides better performance for applications within
the domains that do not require specialized hardware.
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